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1. Introduction 

This Is a discussion of methods Tor describing, mathematically, 

flows between compartments in a multi-compartment system. We will give 

the conventional theory, based on the solution of a system of linear 

differential equations; we will also give a theory based on probability, 

viewing the system as a collection of "states" with a particle moving 

from state to state with certain probabilities, remaining in each state 

a random time with an exponential distribution.  anally, we will take 

still another approach, again based on probability theory, in which we 

consider the sojourn time of a particle, that is, the time it spends 

after leaving a given compartment before returning to that compartment. 

This last approach seems to be potentially the most useful, as It fits 

well the practical situation in which an experimenter is able to observe 

the disappearance of tracer amounts of a substance from only one of 

several biological "compartments".  He Is then interested In finding 

models consistent with his observed disappearance curve.  In our parlance, 

we will look for models with a given sojourn time.  The procedures for 

finding a class of models with a given sojourn time from, say, the first 

compartment, will be easier than those based on solving the system of 

linear differential equations, in addition, the methods will be more 

general, and apply to non-linear situations as well. 

2. Multi-compartment systems viewed as a set of simultaneous linear 
differential equations 

It is customary to express the amount of tracer in each of the 



compartments  of a multi-compartment system as   the solution  to a system 

of linear differential  equations.     We give a brief outline of a method 

for solving such  systems,  using matrix theory.      Define the  vector 

£ =  (x  (t),x (t),...,xn(t)).     We want  to solve 

where    A     la  an     n * n     matrix of constants,   and  Is  dlagonable;   the dot 

means differentiation with  respect to     t.     We  express    A    in  terms  of 

its   principal  idempotents,     A =  r-E.   +•••+ r E   ,     with    r, , . 
11 mm'/, l'v (A   - r.I) 

distinct characteristic   roots  of    A     and     E.   =    JT  *  

. . r. t r„t r t 
tA _       1  ., ,        2,-. ,       m „ 

e       = e       En + e       E„ +•••+ e       E 
1                   ? m 

r.   - r. 
i o 

, r       the 
ra 

Then 

and  the solution  to (l)   is 

r, t r_t r t 
^ =   ^0(e  -L  E1  + e  ^  Ej, +..•+ e m Ej. 

As examples, consider m - 2 and  3.  When A has two distinct roots, 

r ,r ,  we have 

A - r0t r.. t  A - r-, I r„t 
? = ^[- r-e 1  + i-e 2 ] 

'0 rl " r2 r2 " rl 

If    A    has  distinct  roots     r, ,r„,r_,     then  the  solution  to  (l)   is 

(A   - r2l)(A   - r3l)      ^t       (A  - ^l) (A  - ly)     r2t 
5 =  ^0^   - 7JUI   -r3)   e +  (r2-r1)(:        ^^ ^   ' .r2 - r3T 

(A  - ^iXA  -  r2l)     r3t 
+  (r3  - r^i r3   - r/ f 



For a numerical example,  consJrler this system 

15 
18 

n 
6 Ji-^ 

If we introduce a trace amount In the first pool, what proportion 

of the tracer will be in the first and second pools at time t? Let 

x,(t)  and  xp{t)  be those proportions, so that x^{0)   =  1 and 

x2(0) = 0.  Then 

dXl(t) 1 
-dt— = " ^l(t) + 2X2 

dx (t) 
%l        = ^(t) - 3x2{t). 

_ /-4  4 In matrix form, if A = (~    )  and  ^ = (x, (t),x?(t)) ,  we have 

f -3 

I. = Kk,    C0 = (1,0) 

We need the roots of A}  they are found by solving 

|    -3A 
|A  -\I| = U + X)(3  + K)   -2=0. 

The roots  are    r,   =  - 5,r    =   - 2.     Hence  the solution is 

K = (l>o)iA4|lI e-5t + (1>0)iA_^5lI e-2t 



or 

,2   i\ -6t . ,1 Av -2t 

that Is, 

x^t) = | e-5t + 1 e^ X2(t) = .ie-5t+|e-2t# 

3.  Theory of a particle moving from state to state 

We will give a brief development of the probability theory that 

describes the behavior of a particle which moves from compartment to 

compartment in a multi-compartment system. We assume that the time that 

the particle spends in the i  compartment has an exponential distrlbu- 
-a. x 

tion, say with density a.e   , and that the probability a particle 

leaving the i  compartment will go to the j  compartment is a constant, 

independent of time, say p... Let B(t) = (b  (t))  be the transition 

matrix of the system, which is defined as follows: Suppose there are n 

compartments in the system.  Then B(t)  is an n x n matrix whose 

elements, b. .(t),  are functions of tj they give the probability that 

+ Vi 
a particle placed In the i  compartment at time zero will be in the 

j  compartment at time t.  The key to the theory lies in the fact that 

the matrix function B(t)  satisfies B(s + t) = B(s)B(t),  and hence 

there is a constant matrix A such that B(t) = e  .  The argument runs 

along these lines - to show, for example, that B(9) = B(5)B(A), and in 

particular, say when n = 3, that 

b23(9) = b21(5)b13M + b22(5)b23(4) + b23^b33(^ 

we note that b„ (9)  is the probability that a particle placed in 



coiipartment II will be in compartment III after 9 time units, aay hours, 

Now the only way that a particle can start in II and be in III after 9 

hours, is at t = 5, to be in I and then go to II during the next four 

hours, or at t = 5, be in II and go to III in the next four hours, or 

at t = 5i be in III and also be in III after four more hours. Thus the 

relation we want is* 

(1)  b23(9) = b21(5)b13U) + b22(5)b23U) + b23(5)b33U) 

The same argument applies  to any breakdown of a time interval into two 

parts,   and hence  the relation 

(2)     B(s  + t)   = B(s)B(t) , 

which expresses all relations of the type (1) simultaneously, by way of 

matrix multiplication. 

From (2), we see that for integers m, B(m) = B(l) , and that 

B(-) = Bd)1'"1.  Hence for rational r > 0, B(r) = B(l)r and since 

the elements of B are continuous functions of t,  we have B(t) = B(l) 

for all t > 0. Writing B(l) = e , we get the basic formula for the 

transition matrix of the system: 

B(t) = etA, 

where A is a matrix of constants whose elements we must find. We do 

this by studying the limiting behavior of B(t) as t ->■ 0. Let the 

elements of A be a 
ij 

We have 

(3)  B(t) = etA = I + tA + 

* In this argument, it is essential that the time in each compartment have 
the exponential distribution, in order that the future time in a compart- 
ment, given that a particle is in a compartment at time t, be independent 
of t.  The exponential is the only distribution with this property. 



When t Is small, b  = e    - 1 - a.t, while from (3)> b..(t) 

= 1 + ta...  Thus 

ali 

A similar argument will show  that 

aij = Pijal' 

th 
with p..  the probability that a particle leaving the 1  compartment 

will go to the j  compartment.  Thus 

A = 

-al    alP12 

a2P21 

ia p ,    a p „ \ n^nl    n^n2 

a2P13 

a2p23 

a p „ 
n^n3 

We summarize the theory in this form: 

Theorem.  If a particle moves from compartment to compartment in a system 

of n compartments, and If the time a particle spends in the i 
-a. x 

compartment has the exponential density, a.e 1 , and if p. .  is the 

probability a particle leaving the i  compartment will enter the j 

compartment, then the matrix B(t), whose elements b..(t)  give the 

probability that a particle starting in the i  compartment will be in 

the j  compartment at time t,  satisfies 

B(s + t) = B(s)B(t) 



and hence 

B(t) =eU, 

where 

a2p21 

alP12 

-a. 

alp13 

a2p23 

alPln 

a2P2n 

va P 1 k n^nl a P -, a p _ 

As an example, sonsider this system. 

• 
LA^OVJ 

2 

^ 
n 

6 12 5 1 

r 3 /X 
in 

The density functions for the time a particle spends In I, II, and III 

are lie-111, 5e  , and 7e  .  The probability that a particle leaving 

16 10 . 15 
I will go to II is p12 = ££, similarly,  p13 = jjjj", P21 = 25' P23 = 25' 



'31 
12 
21'   p3? 

2. 
21 l'hus 

- 11 "(i ^ 

■# -   5 A25' 

'# ^ä) - 7 

and   the   transition matrix of  the system is    B(t)   = e tA 

The abov« method may also be applied to systems with absorbing 

states, that is, compartments with flow in but no flow out.  This is 

done by putting  a. = 0  for such states.  For example, in this system, 

12 
18 

12 

n ffl 

we put a1 = 9,a2 = 6,^  = 0, ^ = 1,^ =  O.p^ = ^p^ = if 

the transition matrix is B(t) = e  , where 

and 

A = 

- 9 9 C 

6(^)      -6       eog)! 
0 0 0 

tA There remains  the problem of finding  the matrix    e        when the 

matrix    A    is given.     This may be done,  at least In the case when    A 

is  similar to a diagonal matrix,  and  most practical  problems  seem to 

fall  in  this  category,   as   follows:     Let the distinct characteristic 

roots  of    A    be     r1,r2,...,rm.     Let  the principle idempotents  of    A 

be    E,   ,E„,...,E   ,    where 1      ' m' 

(A  - r.I) 
E. s J_ 

rl - r.1 



Then 
.. ivt r„t r t 

e      = e      E,   + e       E„ +• • •+ e       E  . 12 m 

For example, when    A    has  two distinct roots, 

tA       (A  - Vj     rlt   .   (A  - rl^     V e      = -—  e        +   e 
rl  -r2 r2 " rl 

When    A    has  three distinct roots, 

tA      (A-r2l) (A-r-l)     ^t      (A-^I) (A-r I)     r2t      (A-r1l)(A-r2l)     rt 
6      =(r1-r2)(r1-r3)   e + ^-- w -    -V   « + ^    "^ ^   e       ' (r2-rl)(r2-r3) (r3-r1)(r3-r2) 

For a simple numerical example, let A be the matrix of the system 

given above, 

-9   9 0 

A - i 2   -6 U 

0    0 0 

The roots are found by solving 

|A -XI| = 

-9-\ 9 0 

2 -6-\ 0 

0 0 A 

= -\[(9 + \)(6 + \) - 18] = 0. 

The roots are r.. = -3, r = -12, r- = 0. 
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Hence 

-     _ (A  + 121) (A  -  01) 2 
'l     (-3 + l?K-3 - 0) 9 

1 1 i\ ■i 3 
2 2 8 
9 3 ~ 9 

_ (A jr  31) (A  - 01) 
2       (-12 + 3) (-12 -0) 

1 
3 

0 

F    = (A + 31)(A + 121) _ 
3 (0 + 3){0 + 12) 

0 0 1 

0 0        1 

0 0 1 

and 

tA _    -3t,.. -lat-    .    ot^ e      = e      E-.   + e E„ +  e    E_. 

If we write  this  as  a single matrix,   we have 

1  -3t ^ 2  -12t 
r       +3e 

-3t -12t e - e 
4  -3t ^ 1   -12t 

1 -r     +3e 

B(t)   = e tA 2  -3t      2  -12t 2   -3t ^ 1  -12t 
8  -3t      1  -12t 1 -r    -r 

Thus,   the probability  that a  particle starting  in  II will be in  I    at 

time     t     is    ie"31  - |€~12t.     The probability it will be  in  III  is 

If a trace amount of substance is  put  into compartment 

I,   then at  time     t,   the proportion  of that amount in compartments   I,II, 

is    |e-3t 

1  - |e-3t - ie-12t. 
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and III will be 

1 -3t  2 -l?.t  -3t   -12t    ,  ,  4-3t , 1 -12t 
je-^+re   ,e^-e   ,  and 1 - =e ^ + |e   . 

4,.  Theory based on a particle's sojourn time 

In this section we will develop a method for interpreting the 

disappearance of tracer amounts of a substance from a single compartment 

or pool.  The method is different from those of Sections 2 and 3;   it is 

more general, and easier to apply.  The idea is roughly as follows: A 

radioactively labelled particle enters the compartment under investi- 

gation.  It spends a random amount of time, presumably with an exponen- 

tial distribution, in the main compartment.  It then escapes from the 

main compartment, after which there are two possibilities - the particle 

does not return, or else It returns after some random time whose distri- 

bution we wish to find.  We will call this the sojourn time of the particle. 

We consider how to relate the tracer disappearance curve to these two 

factors - the probability that a particle will not return, and the distri- 

bution of sojourn time for those particles that do return.  Having the 

distribution of sojourn time, we will consider physical situations con- 

sistent with that distribution. 

This is the situation: We add a unit amount of radioactive tracer 

to a compartment, and observe the amount still in the compartment, say 

f(t), at times  t,,t?,...,t . We assume that a radioactive particle 

spends a random amount of time in the compartment, and then escapes. 

Having escaped, with a certain probability it will not return, otherwise 
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it will return after a random sojourn  time with density function    g(x) 

The relation  betwm n    f    and    g    is given by this  rather formidable 

appearing integro-differential equation: 

(A) ^r^= - hf(t) + h 5 f(x)g(t - x)dx . at 0 

We will go through  an example  to show why  {u)  describes  the situation and 

to show that  the analysis  of (A)   is  not as difficult as  it first appears. 

Suppose  that we have a pool which contains     2 mg.   of the substance in 

question.    We use  a radioactive isotope  to label a tracer amount  of the 

substance and inject it into  the pool.    We then observe the disappearance 

curve    f(t),     the   (relative)   amount of tracer still present at time    t. 

Suppose  that  the  initial slope of the d^«ppearance curve is    - 2.     This 

means   that    A mg.   of the substance are leaving  the pool each hour,  and, 

presumably,     A mg.   are  entering the pool each hour,  on the assumption that 

we have a steady state : 

4mg/hr 4mg/hi 

How if none of the radioactive particles were fed back to the main pool, 

the disappearance curve would satisfy 

^^- = - 2f(t) 
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2+ 
and hence    f(t)   = e~     ,     since    f(0)   =1.     But suppose that there Is a 

feedback mechanism which we characterlzu by a function    g(x).    Then (4) 

becomes 

dt o 

the first term on the right indicating that tracer is lost from the pool 

at the rate of two times the amount present; the second, integral term, 

reflecting the cumulative feedback. To illustrate the feedback term, 

say when t = 8 hours, we have 

8 
5 2f(x)g(t - x)dx = 2f(l)g(7) + 2f(2)g(6) + 2f(3)g(5) +•••+ ?f(7)g(l), 
0 

the terms on the right showing that at t = 8 hours, the feedback is 

made up of the amount received seven hours ago, 2f(l), times the pro- 

portion of that amount which Is to be returned, g(7), plus the amount 

received six hours ago,  2f(2), times the proportion of that amount 

which is to be returned, g(6), etc. 

Next, suppose that we have observed the disappearance curve  f(t) 

at enough time points to have determined that it has a particular functional 

form, say 

f(t) = .6e"3t + .4.e--5t. 

The initial slope of f is still - 2, but it became evident after a 

short time time that the disappearance curve was not a single exponential, 

and hence that some of the tracer was being fed back. To find the distri- 

bution of sojourn time for particles returning to the compartment, we 

must solve (5) for g(x) . Now a little fiddling with equation (A) will 
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establish the  following  rule:     If    f    is  a linear combination of 

exponentials,   then    g    la a linear combination of one  fewer exponentials. 

—bx In our case,  we assume  that    g    has   the  form    g(x)   = ce       ,     and 

try to solve  (?)•     The procedure is  elementary,  we merely substitute 

ce- for    g    and get conditions  on    c    and    b.    We have 

- 1.8e-3t -   .2e-5t =  - 1.2e-3t  -   .8e-5t + 2^ .6e-3x +  .ie-^ce^^dx. 
0 

Integrating and collecting terms, this reduces to 

- .3e-3t + .3e-
5t = ^e^ - e-bt) + ^^(e-

51 - e^) . 

We thus need to have 

•6  ,  »A- 
b - 3   b - .5 

and 

= 0,    or b = 1.5, 

• 6c _        • 4.C        T _  nc- g—^=-.3,  F_-F=.3,  or c - .75. 

Thus our feedback mechanism is described by 

g(x) - .75e"1,5x,  x > 0. 

Notice  that    g    is  not a proper probability density function,  since 

the area under    g    is     .5»    not    1: 

00 CO 

5 g(x)dx = 5   .75e~1-5xdx =  .75/1.5 =  .5. 
0 0 

This means  that only one-half of the particles  escaping  from the main 

compartment are being  fed back;  the other half do not return.    Thus we 
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have the stochastic  Interpretation of this  particular disappearance 

curve,     f (t)   =   .6c t   ./,R   *    ':    A  radioaoti V'  particle  entering  the 

main compartment spends  a  random time In  that coitmartment,  the distribu- 

-2t 
tion of  that time la  exponential with density  function     2e       .    After a 

particle  escapes  from th«  main  compartment,   with probability one-half 

it does  not return,   and  with  probability  one-half it returns  after a 

-1.5x sojourn time witli exponential density    l.fie 

We now look for physical situations which can produce this sort of 

feedback;   fifty percent not returned,   fifty percent returned  after a 

-1 5x random delay with density    1.5e     *     .     Unfortunately,   and  this  Is   typical 

of actual problems  of this  type,   there are very many plausible situations 

which will  produce the required  feedback and hence the given tracer 

disappearance curve.     For example,   this  two-pool system would have 

—3t —  5t 
tracer disappearance  curve    f(t)   =  .6e        +  ./ie"       i 

2 mg/ht^ 

 . 2mg/hr 

|2mg/hr 
But this pool system would also have the same disappearance curve, 

i n 
2 mg/hr  | ~ | iffifl/bl, La, J2 mgftr 

2mg/h 
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for it meets  the feedback  requirements   - half of the particles  leaving 

do not  return and those  that do  return  have   a sojourn  time with distri- 

bution    1.5e~ . 

-3t -t5t systems  which will have disappearance  curve     ,6e +  .^.e   * 

We can assign,   in  fact,  an  infinite number of two-compartment 

For 

any assignment  of     r,   0 < r < 2,     this   two-compartment system will  have 

the  required disappearance curve: 

2 
2+r  , 

2 

L, 
For if a particle leaves   the main compartment,   I,   then with  probability 

2 + r —;   it will go to the second compartment, and once there It will 

The product of these is   ;  • ^—;  = —. r 4    2 + r   2 return with probability -^—r— 

Thus the probability that a particle will be fed back is one-half, and the 

-1 5x random sojourn time has the exponential distribution 1.5e  '  , since 

the time a particle spends in II has that distribution. 

5.  Relations between the disappearance curve f, and the sojourn time, 
or feedback function, g 

We have seen in the previous section that if f(t)  is the amount 

of tracer present In the main compartment at time  t, then  f satisfies 
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this  dlfferentio-integral  equation: 

^i-= - hf{t)   4 hj   f(x)g(t - x)dx, 

where    g(x)     Is  the   feedback function which describes   the probability 

distribution of the   time  that particles spend after leaving  and before 

returning to the main compartment.    The area under    g(x)    gives the 

probability that a particle will be fed back, and when    g(x)     is normalized 

by dividing by that probability,   it gives  the density function of the 

sojourn time. 

In multiple pool systems with constant  pool sizes  and flows,   the 

disappearance curve and feedback function will be linear combinations 

of exponential  functions.     We summarize here the formulas which give    f 

in terras  of    g    and  vice versa when    f    is  made up of two or three 

exponential components; 

When    f    and    g    are related by 

^fi- = - hf(t)   + hj   f(x)g(t  - x)dx a% 0 

and f is a linear combination of exponentials, then g will be a 

linear combination of one fewer exponentials. Relations between f 

and g in this case are as follows; 

1.   If f(t) = p^  1 + p2e 
2 ,       f(0) = l.f'CO) = - h, 

-a,t     -a„t 

then g(x) = ce  , where 

b = a. + a_ - h 

c = (h - a^Ch - a?)/h. 



18 

-bx "alt    ^2* 
2. If g(x) = ce  ,  then f(t) = p^    + p e   , where a^^ 

and a_ are the two roots of the quadratic equation 

x2 - (h + b)x + h(b - c) = 0 

and P-IJPO 
are 'the solutions to the linear equations 

Pi + P2 = 1 

pla2 + p2al = b- 

An explicit formula for p.  Is p. = (h - a^/(a^ - a„) . 

-a, t -a^t -a_t 
3. If    f(t)  = p1e    ■'-    + p2e    ^    + p e ,    f(0)  = l,f'(0)  = - h, 

-b1x -b2x 
then    g(x)   = c,e + c_e ,    where    b.     and    b„    are the  roots 

of the  quadratic   equation 

2 
x    - (a1 + a2 + a_   - h)x + P-j^a.  + P2lilaL3 + p3ala2 ~ 0 

and    c,,c„    satisfy the  two linear equations 

r     +n    -h     +h        ala2 + ala3  + a2a3 - blb2 c1  + c2 - b1  + b2 ^  

ala2a3 b2Cl + blc2 = blb2  " -SP ' 
-b  x "■t,?x -a, t -at -a„t 

^.       If    g(x)   = c-j^e    "L     + c  e ,     then     f(t)   = p e     l    + p  e + p^e    J   , 

where  a. ,a_,a_ are the roots of the cubic equation 

x3 - (b1+b2+h)x
2 + [b1b2+h(b1+b2-c1-c2)]x - h(b1b2-c1b2-c2b1) = 0 

and p,»p2,p, are solutions to the three linear equations 

p1 + p2 + p3 = 1 

Plal + p2a2 + P3a3 = h 

p1a2a3 + p2a1a3 + p3a1a2 = b^,,. 
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6.       Quick and   eaay solutions  to two and  three-compartment systems 

In this section we will show, by means  of examples,  how easy it 

is   to determine  the sojourn time  of a particle which goes  from compart- 

ment to compartment In a multiple pool system.    We need  this basic  rule: 

If a particle enters  a compartment which has several possible 

exits,  such as   thlst 

(a+b+c)/hr | 1   V units 

a/hr     , 

b/hr    , 

c/hr 

then the  probability it will leave by the    "a"    exit is .        ,    b£ 

b the    "b"     exit. etc.     Given that the particle leaves by the a+b+c 
a"     exit,  the  time  the particle spends  in the compartment has  the II oil 

exponential distribution with mean   .    and density function 

—j+c e-
x(a+b+c)A#  Particles leaving by the "b"  or "c" exit have 

the same distribution time in the compartment, that is, the distribution 

of the time that a particle spends in a compartment, given that it leaves 

by a particular exit, does not depend on the particular exit, but only 

on the volume and total flow out of the compartment. 

For example, in this system 

20 , 
4 

6 

4 

10 
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the probabilities a particle will leave  by the    •'6",   "A",   or "10"     exits, 

are    ;r—,  ^,    and    XTJ,   respectively,  and  particles  leaving by any of 

these exits will have remained in the compartment a random time with 

mean    «•   and density function    5e-    ,     since    —-^  = 5. 

As an illustration of how to find   tracer disappearance curves and 

sojourn times  for a system,   consider this  two-pool system: 

I 
10 

n 

5 2 14    , 4   , 

6 

10 

We ask such questions as:  What is the sojourn time of particles leaving 

I?  What proportion of the particles leaving I never return? What Is 

the tracer disappearance curve from I? 

First note that the probability a particle leaving I will go to II 

is .. .-■,-) n = -5.  Once in II, the particle will be fed back to I with 

probability r-rj- = .6.  Hence the probability that a particle leaving I 

will be fed back is the product of these, or (.5)(.6) = .3.  Now for 

particles fed back, the distribution of sojourn time is 5e  , since 

flow out of II is five times the amount present.  Thus the feedback 

mechanism is described by 

g(x) = ce-bx = .3(5e-5x) = 1.5e-5x. 
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Referring to Rule 2 In Section 5, we know that the disappearance curve 

will be 

-a. T. 
f(t) = p1e  

1  + p 
a,t     -a„t 

2e 

where    a1 ,a_    are the  roots   of 

that  Is, 

Then 

x2 - U + 5)x + 4.(5  - 1.5)  = x2 - 9x + U = 0 

a-j^ = 7,  a2 =  2. 

pl " 7~^ "   ^ 

and hence 

f(t)  =  ./Ve"7t +  .6e"2t 

Is  the disappearance curve of a unit amount of tracer placed  in compartment 

I at    t =  0. 

Now consider another type of problem:     Given that the  tracer 

disappearance curve  from a compartment is  a particular function, say 

f(t)   =|e-3t + |e-7t,     f'(0)  =  - 6, 

construct pool systems  with that disappearance function. 

-bx 
To do this, we  find the sojourn function,    g(x)   = ce       ,    where, 

according  to Rule 1 of Section 5,     b=3+7-6=4,     and 

c = , (6-3)^6-7)  = |.    Thug 

g(x)   = ie-6x = ^Ae"^) ,     x > 0. 
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1 7 'i'hus   the area under     g(x)     is    g-,     and  hence    r    of the  particles  leaving 

the  compartment do not return;   of the     g-    that do   return,   the sojourn 

time haa  an exponeni.ial density,     /»e-+   .     There are,  as usual,   an 

infinite number  of two-compartment systems  with  the given disappearance 

curve and  sojourn function.     For any choice  of    r    in    0 < r < 5«25, 

this  system will be  such a  one: 

n 
(6-r)V   . 

Mv (5.25-r)V. 

'    .75V 


